HYDROCARBON USAGE AND RISKS
Usage - Hydrocarbons are a primary energy source for current civilizations. The predominant use of hydrocarbons is as a combustible fuel source. In their solid form, hydrocarbons take the form of asphalt (bitumen).
Mixtures of volatile hydrocarbons are now used in preference to the chlorofluorocarbons as a propellant for aerosol sprays, due to chlorofluorocarbons' impact on the ozone layer.
Methane (CH4) and ethane (C2H6) are gaseous at ambient temperatures and cannot be readily liquefied by pressure alone. Propane (C3H8) is however easily liquefied, and exists in 'propane bottles' mostly as a liquid. Butane (C4H10) is so easily liquefied that it provides a safe, volatile fuel for small pocket lighters. Pentane (C5H12) is a clear liquid at room temperature, commonly used in chemistry and industry as a powerful nearly odorless solvent of waxes and high molecular weight organic compounds, including greases. Hexane (C6H14) is also a widely used non-polar, non-aromatic solvent, as well as a significant fraction of common gasoline. The C6 through C10 alkanes, alkenes and isomeric cycloalkanes are the top components of gasoline, naphtha, jet fuel and specialized industrial solvent mixtures. With the progressive addition of carbon units, the simple non-ring structured hydrocarbons have higher viscosities, lubricating indices, boiling points, solidification temperatures, and deeper color. At the opposite extreme from methane lie the heavy tars that remain as the lowest fraction in a crude oil refining retort. They are collected and widely utilized as roofing compounds, pavement composition, wood preservatives (the creosote series) and as extremely high viscosity shear-resisting liquids.
Hydrocarbon use is also prevalent in nature. Some eusocial arthropods, such as the Brazilian stingless bee Schwarziana quadripunctata, use unique hydrocarbon "scents" in order to determine kin from non-kin. The chemical hydrocarbon composition varies between age, sex, nest location, and hierarchal position
Mixtures of volatile hydrocarbons are now used in preference to the chlorofluorocarbons as a propellant for aerosol sprays, due to chlorofluorocarbons' impact on the ozone layer.
Methane (CH4) and ethane (C2H6) are gaseous at ambient temperatures and cannot be readily liquefied by pressure alone. Propane (C3H8) is however easily liquefied, and exists in 'propane bottles' mostly as a liquid. Butane (C4H10) is so easily liquefied that it provides a safe, volatile fuel for small pocket lighters. Pentane (C5H12) is a clear liquid at room temperature, commonly used in chemistry and industry as a powerful nearly odorless solvent of waxes and high molecular weight organic compounds, including greases. Hexane (C6H14) is also a widely used non-polar, non-aromatic solvent, as well as a significant fraction of common gasoline. The C6 through C10 alkanes, alkenes and isomeric cycloalkanes are the top components of gasoline, naphtha, jet fuel and specialized industrial solvent mixtures. With the progressive addition of carbon units, the simple non-ring structured hydrocarbons have higher viscosities, lubricating indices, boiling points, solidification temperatures, and deeper color. At the opposite extreme from methane lie the heavy tars that remain as the lowest fraction in a crude oil refining retort. They are collected and widely utilized as roofing compounds, pavement composition, wood preservatives (the creosote series) and as extremely high viscosity shear-resisting liquids.
Hydrocarbon use is also prevalent in nature. Some eusocial arthropods, such as the Brazilian stingless bee Schwarziana quadripunctata, use unique hydrocarbon "scents" in order to determine kin from non-kin. The chemical hydrocarbon composition varies between age, sex, nest location, and hierarchal position
Risks- Hydrocarbons are a class of chemicals that we deal with daily. They are so common, and come in so many forms, that we often forget about some of the more unusual toxic situations that can occur with exposure.
Hydrocarbons are common in modern society, and are consistently spilled, released, inhaled, and intentionally or unintentionally ingested. Responders routinely encounter fuels (gasoline, kerosene, diesel fuel), oils (mineral, motor, lubricating, lamp, fuel), solvents (dry cleaning solutions, spot removers, degreasers, paint thinner), and others (glue, paint, propellants). We find them in tanker trucks, in industry, in dry cleaning establishments, and in our garages and under our sinks.
The most obvious danger from most hydrocarbons is their flammability and potential to explode under some conditions. The danger of fire or explosion is so familiar that we sometimes fail to appreciate the other toxic ramifications of these substances once the potential for fire has been mitigated.
Hydrocarbon poisoning such as that of benzene and petroleum usually occurs accidentally by inhalation or ingestion of these cytotoxic chemical compounds. Intravenous or subcutaneous injection of petroleum compounds with intent of suicide or abuse is an extraordinary event that can result in local damage or systemic toxicity such as tissue necrosis, abscess formation, respiratory system failure and partial damage to the kidneys, the brain and the nervous system. Moaddab and Eskandarlou report a case of chest wall necrosis and empyema resulting from attempting suicide by injection of petroleum into the pleural cavity.
Safety precautions-Many hydrocarbons are highly flammable, therefore, care should be taken to prevent injury. Benzene and many aromatic compounds are possible carcinogens, and proper safety equipment must be worn to prevent these harmful compounds from entering the body. If hydrocarbons undergo combustion in tight areas, toxic carbon monoxide can form. Hydrocarbons should be kept away from fluorine compounds due to the high probability of forming toxic hydrofluoric acid
Diesel evaporates slower than gasoline. Diesel is oily like ,and smells differently than gasoline.Diesel consists of hydrocarbons which have more carbon numbers than gasoline. So the molecular weight of diesel is higher than gasoline. Therefore, diesel is less volatile and has a higher boiling point than gasoline.Diesel is cheaper than gasoline, but gasoline is cleaner, and more environmental friendly.
ReplyDeleteGasoline is a necessity in many industries. Gas is the primary fuel used to make most engine-powered vehicles work. The hydrocarbon components of gasoline make it poisonous. Hydrocarbons are a type of organic substance made up of hydrogen and carbon molecules. They are part of all sorts of modern substances, including the following:
ReplyDeletemotor oil
lamp oil
kerosene
paint
rubber cement
lighter fluid
Gasoline contains methane and benzene, which are dangerous hydrocarbons.
Perhaps one of the greatest risks of gasoline exposure is the harm it can do to your lungs when you inhale its fumes. Direct inhalation can cause carbon monoxide poisoning, which is why you shouldn’t run a vehicle in an enclosed area, such as a garage. Long-term exposure in the open can also damage your lungs.
Pumping gasoline into your gas tank isn’t generally harmful. However, accidental liquid exposure can harm your skin.
Accidental gasoline consumption is far more widespread than intentionally swallowing the liquid.
Swallowing gasoline or excessive exposure to fumes warrants a visit to the emergency room or a call to a local poison control center. Make sure the person sits up and drinks water unless instructed not to do so. Ensure they’re in an area with fresh air.
DeleteBe sure to take these precautions:
thumbs down In case of emergency
Don’t force vomiting.
Don’t give the victim milk.
Don’t give liquids to an unconscious victim.
Don’t leave the victim and yourself exposed to gasoline fumes.
Don’t attempt to remedy the situation yourself. Always call for help first.